400. I.K. Argyros, S. George, M. Argyros, Updated and weaker convergence criteria of Newton's iterates for equations, J. Math. Anal. 3 (2023) 5,doi: 10.28924/ada/ma.3.5
399. S. George, M. Saeed, I. K. Argyros, P. Jidesh, An apriori parameter choice strategy and a fifth order iterative scheme for Lavrentiev regularization method, Journal of Applied Mathematics and Computing, https://doi.org/10.1007/s12190-022-01782-3
396. Michael I. Argyros, Ioannis K. Argyros , Samundra Regmi, Santhosh George, Generalized Three Step Numerical Methods for Solving Equations in Banach Spaces, Mathematics 2022, 10, 2621.
https://doi.org/10.3390/math10152621
395. I.K. Argyros, S. George, Ball convergence of an efficient multi-step scheme for solving equations and systems of equations, Applicationes Mathematicae, 49,1 (2022), pp. 103—112
394. Samundra Regmi, Ioannis K. Argyros, Santhosh George and Christopher I. Argyros, Extended Convergence of Three Step Iterative methods for Solving Equations in Banach space with Applications, Symmetry 2022, 14, 1484.
https://doi.org/10.3390/sym14071484
392. I.K. Argyros,S. George,C. Argyros, Extended second derivative free third order Chebyshev-like methods for solving nonlinear equations, Communicationson Applied Nonlinear Analysis Volume 29 (2022), Number 3, 65 - 74.
391. Samundra Regmi, Ioannis K. Argyros, Santhosh George, Christopher I. Argyros, Developments of Newton’s Method under H"older Conditions, Er. J. Math. Anal. 2 (2022) 18, doi: 10.28924/ada/ma.2.18
390. Samundra Regmi, Ioannis K. Argyros , Santhosh George, Christopher, I. Argyros On the Newton-Kantorovich theorem for solving nonlinear equations,foundations-1672177
389. S. Regmi, I. K. Argyros,S. George, C. Argyros, Extending the Traub theory for solving nonlinear equations, Contemporary Mathematics , 2022,5, 3(2):217-31.
388. I.K. Argyros,S. George, M. Argyros, A Comparison Study of the Classical and Modern Results of Semi-local Convergence of Newton-Kantorovich Iterations-II, Mathematics 2022, 10, 1839.
https://doi. org/10.3390 /math10111839
386. Samundra Regmi,Ioannis K. Argyros, Santhosh George, Christopher I. Argyros, A Comparison Study of the Classical and Modern Results of Semi-Local Convergence of Newton-Kantorovich Iterations, Mathematics 2022, 10, 1225.
https://doi.org/10.3390/math10081225
385. I.K.Argyros,S. George, Extended local convergence of a Weerakoontype method in Banach spaces, Communications on Applied Nonlinear Analysis, Volume 29 (2022), Number 2, 37 – 48
384. Regmi, S.; Argyros, I.K.; George, S.; Argyr, C.I., Extending King’s Method for Finding Solutions of Equations. Foundations 2022, 2, 348-361.
https://doi. org/10.3390/foundations 2020024
383. S. Regmi, I. K. Argyros, S. George, Christopher Argyros, A comparison Study of the Classical and Modern Results of Semi-local Convergence of Newton-Kantorovich Iterations, Mathematics 2022, 10, 1225.,
https://doi. org/10.3390/math10081225
382. S. Regmi, I. K. Argyros, S. George, Christopher Argyros, An extended radius of convergence comparison between two sixth order methods under general continuity for solving equations, Advances in the Theory of Nonlinear Analysis and its Applications 6 (2022) No. 3, 310-317., https ://doi.org/10. 31197/atnaa.1056652
381. S. George, Christopher Argyros, On the semi-local convergence of the Homeier method in Banach space for solving equations, Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 1, pp. 63-68.
380. S. George, I. K. Argyros, Kedarnath Senapati, K. Kanagaraj, Local convergence analysis of two iterative methods, Journal of analysis,
https://doi. org/10. 1007/s41478-022-00415-z.
379. I.K.Argyros,S. George, Extended convergence analysis for an efficient eighth order method in Banach spaces under weak ω-conditions, Southeast Asian Bulletin of Mathematics, (2022) 46: 1–11.
378. I.K.Argyros,S. George, Ball convergence of an efficient high order iterative method for solving Banach valued equations,Southeast Asian Bulletin of Mathematics, (2022) 46: 1-12.
377. I.K. Argyros, S. George, Christopher Argyros, Comparing and extending two fourth order methods under the same hypotheses for equations, Advances in Nonlinear Variational Inequalities, Volume 25 (2022), Number 1, 49 - 58.
376. Samundra Regmi,I. K. Argyros, S. George, Christopher Argyros, Ball comparison between three fourth convergence order schemes for nonlinear equations, Comput. Math. Comput. Model. Appl. 2022, Vol. 1, Iss. 1, pp. 56–62.
375. I.K.Argyros,S. George, Michael Argyros, On the influence of center-Lipschitz conditions in the convergence analysis of multi-point iterative methods, Communications on Applied Nonlinear AnalysisVolume 29 (2022), Number 1, 91 - 102.
374. Ioannis K. Argyros, S. George, Christopher Argyros, Extended Convergence for m-step iterative methods and applications,Communications on Applied Nonlinear Analysis Volume 29 (2022), Number 1, 81 - 90.
373. S. Regmi, I. K. Argyros, S. George, Christopher Argyros, On a novel seventh convergence order method for solving nonlinear equations and its extensions, AEJM,
https://doi.org/10.1142/S1793557122501911
372. I.K.Argyros,S. George, Expanding the applicability of a fifth order iterative method in Banach space under weak conditions, PanAmerican Mathematical Journal Volume 32(2022), Number 1, 34 - 44.
371. I.K.Argyros,S. George, Unified semi-local convergence for Newton’s method under generalized conditions in Banach space, PanAmerican Mathematical Journal Volume 32(2022), Number 1, 45 - 56.
370. Regmi, S.; Argyros, C.I.; Argyros, I.K.; George, S. On the Semi-Local Convergence of a Traub-Type Method for Solving Equations. Foundations 2022, 2, 114–127. https:// doi.org/10.3390/ foundations2010006
369. I.K. Argyros, S. George, Christopher Argyros, On the local convergence of a novel seventh convergence order schemes for solving equations, The Journal of Analysis https:// doi.org/10. 1007/s41478-021-00381-y.
368. Samundra Regmi,Christopher I. Aryros, I. K. Argyros, S. George,Extended convergence of a sixth order scheme for solving equations under
ω-continuity conditions, Moroccan journal of pure and applied analysis, Moroccan J. of Pure and Appl. Anal.Volume 8(1), 2022, Pages 92-101, https://doi.org/10.2478/mjpaa-2022-0008
367. K. Argyros, S. George,Christopher Argyros: On the Ostrowski method for solving equations,Eur. J. Math. Anal. 2 (2022) 3doi: 10.28924/ada/ma.2.3.
366. I.K. Argyros, S. George, Christopher Argyros, A ball comparison between extended modified Jarratt methods under the same set of conditions for solving equations, Probl. Anal. Issues Anal. Vol. 11 (29), No 1, 2022, 32-44, DOI: 10.15393/j3.art.2022.10431
365. George S., C. D. Sreedeep and I. K. Argyros, Secant-type iteration for nonlinear ill-posed equations in Banach space, Journal of Inverse and Ill-posed Problems,
https://doi.org/10.1515/jiip-2021-0019
364. I.K. Argyros, S. George, Christopher Argyros, A comparison between two Ostrowski-type fourth order methods for solving equations under the same set of conditions, Volume 25 (2022), Number 1, 59 - 68.
363. I.K.Argyros,S. George, Extending the convergence region of mstep iterative procedures, Serdica Math. J. 47 (2021), 93-106.
362. I.K.Argyros,S. George, Multi-step high convergence order methods for solving equations, Serdica Mathematical Journal, Serdica Math. J. 47(2021), 1-12.
361. I.K. Argyros, S. George, Ball analysis for an efficient sixth convergence order-scheme under weaker conditions, Advances in the Theory of Nonlinear Analysis and its Applications 5(2021) No. 3, 445-453.,
https://doi.org/10.31197/atnaa.746959
360. I.K.Argyros,S. George, K. Senapati, Extended local convergence for Newton-type solver under weak conditions, Stud. Univ. Babeş-Bolyai Math. 66(2021), No. 4, 757--768, DOI: 10.24193/subbmath.2021.4.12.
358. Samundra Regmi, Ioannis K. Argyros, Santhosh George, Christopher I. Argyros, On the local convergence and comparison between two novel eighth convergence order schemes for solving nonlinear equations, Nonlinear Studies 28 (4),(2021), 1107-1116.
357. Regmi, S.; Argyros, I.K.; George, S.; Magrenan, Á.A.; Argyros, M.I. Extended Kung–Traub Methods for Solving Equations with Applications, Mathematics 2021, 9, 2635.
https://doi.org/10.3390/math9202635
356. Regmi, S.; Argyros, C.I.;Argyros, I.K.; George, S. Convergence Criteria of Three Step Schemes for Solving Equations. Mathematics 2021, 9, 3106.
https://doi.org/10.3390/math9233106
355. Samundra Regmi,Ioannis K. Argyros, Santhosh George, Convergence analysis for a fast class of multi-step Chebyshev-Halley-type methods under weak conditions, Open Journal of Mathematical Sciences 4(1):34-43, DOI: 10.30538/oms2021.0143
354. Argyros, C.I.; Argyros, I.K.; Joshi, J.; Regmi, S.; George, S. On the Semi-Local Convergence of an Ostrowski-Type Method for Solving Equations. Symmetry 2021, 13, 2281.
https://doi.org/10.3390/sym13122281
353. Ioannis K. Argyros and S. George, Ball convergence of Potra-Ptak-type method with optimal fourth order of convergence, J. Numer. Anal. Approx. Theory, vol. 50 (2021) no. 1, pp. 44-51.
352. Ioannis K. Argyros and S. George, Extended Kung-Traub-type method for solving equations, TWMS J. Pure Appl. Math. V.12, N.2, 2021, pp.193-198.
351. I.K. Argyros, S. George, Christopher Argyros, On the local convergence of two novel schemes of convergence order eight for solving equations: An extension, PanAmerican Mathematical Journal Volume 31(2021), Number 4, 61 - 72.
350. Christopher I. Argyros1, Michael Argyros, Ioannis K. Argyros and Santhosh George, Local convergence for a family of sixth order methods with parameters, Open J. Math. Sci. 2021, 5, 300-305; doi:10.30538/oms2021.0166.
349. G. Argyros, M. Argyros, I. K. Argyros and S. George, Extended local convergence analysis of a three-step method of a parameter of convergence order six, Annales Univ. Sci. Budapest., Sect. Comp., 52 (2021) 45-55.
348. I.K. Argyros, S. George, Christopher Argyros, Extended iterative schemes for solving generalized equations, PanAmerican Mathematical Journal,Volume 31,(2021), Number 3, 95 - 102.
347. Samundra Regmi, Christopher I. Argyros, Ioannis K. Argyros and Santhosh George, Ball convergence of a parametric efficient family of iterative methods for solving nonlinear equations, Foundations 2021, 1, 23--31.,
https://doi.org/10.3390/
346. C. Mekoth, S. George, P. Jidesh, S. M. Erappa, Finite dimensional realization of fractional Tikhonov regularization method in Hilbert scales, Partial Differential Equations in Applied Mathematics(2021), doi:
https://doi.org/10.1016/j.padiff.2021.100246.
345. K. Argyros, S. George, Christopher Argyros,Extended Newton Algorithm for conic inequalities, PanAmerican Mathematical Journal Volume 31 (2021), Number 3, 63 - 70.
344. I.K. Argyros, S. George, Ball analysis for an efficient sixth convergence order-scheme under weaker conditions , Advances in the Theory of Nonlinear Analysis and its Applications 5(2021) No. 3, 445-453.
https://doi. org/10.31197/atnaa.746959
343. I.K.Argyros,S. George, Extended local convergence for multistep Jarratt-type method using the restricted region and weak hypotheses, Communications on Applied Nonlinear Analysis Volume 28 (2021), Number 3, 59- 70.
342. Gus Aryros, Michael Argyros I. K. Argyros, S. George, Semilocal convergence of of a derivative free method for solving equations, Probl. Anal. Issues Anal. Vol. 10 (28), No 2, 2021, 18-26.
341. I.K.Argyros, S. George and M.E. Shobha, Ball Convergence Of Mulipoint Iterative Methods For Solving Non-Linear Systems, International Conference on Computational Sciences-Modelling, Computing and Soft Computing "AIP Conference Proceedings,A. Awasthi et al. (Eds.): CSMCS 2020, CCIS 1345, pp. 260–269, 2021.
340. Samundra Regmi, Christopher I. Argyros, I. K. Argyros, S. George, Efficient Fifth Convergence Order Methods for Solving Equations, Transactions on Mathematical Programming and Applications, Volume 9 (2021), Number 1, 23 – 34
339. Shobha M Erappa and Santhosh George, Derivative Free Iterative Scheme for Monotone Nonlinear Ill-posed Hammerstein-Type Equations,IAENG International Journal of Applied Mathematics, 51:1, IJAM 51- 1- 18.
338. Samundra Regmi, I.K.Argyros,S. George, Convergence analysis for a fast class of multi-stepChebyshev-Halley-type methods under weak conditions, Open J. Math. Sci.2021,5, 34-43.
336. I.K. Argyros, S. George, Extended domain for fifth convergence order schemes, CUBO, A Mathematical Journal, 23, 01, 97-108, (2021).
335. Gus Aryros, Michael Argyros I. K. Argyros, S. George, Extended Newton’s method for solving generalized equations using the second derivative: Kantorovich approach, Advances in Nonlinear Variational Inequalities,Volume 24 (2021), Number 2, 1 - 10.
334. Gus Aryros, Michael Argyros I. K. Argyros, S. George, Extended solution for cone inclusion problems using Newton’s algorithm, PanAmerican Mathematical Journal, Volume 31(2021), Number 1, 45- 52.
333. S.George I. K. Argyros, P. Jidesh, M. Mahapatra and M. Saeed, Convergence analysis of a fifth order iterative method using recurrence relations and conditions on the first derivative, Mediterr. J. Math. (2021) 18:57
https://doi.org/10.1007/s00009-021-01697-6.
332. Gus Aryros, Michael Argyros I. K. Argyros, S. George, A comparison between two competing sixth convergence order algorithms under the same set of conditions, CREAT. MATH. INFORM.30 (2021), No. 1, 19- 28.
331. I.K. Argyros, S. George,Ball comparison between four fourth convergence order methods under the same set of hypotheses for solving equations, Int. J. Appl. Comput. Math (2021) 7:9
https://doi.org/10.1007/s40819-020-00946-8.
330. M. Chitra, S. George, P. Jidesh, Fractional Tikhonov regularization method in Hilbert scales,Applied Mathematics and Computation 392 (2021) 125701.
329. I.K.Argyros, S. George and M. E. Shobha, Extending the applicability of Newton's and Secant methods under regular smoothness, Bol. Soc. Paran. Mat., 39(6), (2021): 195--210.
328. I.K.Argyros, S. George, Extended convergence of a two step-Secant-type method under a restricted convergence domain, Kragujevac Journal of Mathematics, Volume 45(1) (2021), Pages 155--164.
327. I.K.Argyros, S. George, Extended convergence of Jarratt type methods,Applied Mathematics E-Notes, 21(2021), 89-96.
326. Gus Argyros, Michael Argyros, Ioannis K. Argyros, Santhosh George, Unified ball convergence of third and fourth convergence order algorithms under ω-continuity conditions, Journal of Mathematical Modeling Vol. 9, No. 2, 2021, pp. 173-183.
325. I.K.Argyros,S. George, Extending the solvability of equations using secant-type methods in Banach space, . Numer. Anal. Approx. Theory, vol. 50 (2021) no. 2, pp. 97-107.
324. I.K.Argyros and S. George, Expanding the applicability of Newton's method and of a robust modified Newton's method, Applicationes Mathematicae, 48, 1 (2021), pp. 89--100, DOI: 10.4064/am2289-4-2016
323. I.K.Argyros,S. George, Highly efficient solvers for nonlinear equations in Banach space,APPLICATIONES MATHEMATICAE 48, 2 (2021), pp. 209-220, DOI: 10.4064/am2392-1-2020
322. I.K.Argyros,S. George, Extending the applicability of an Ulm-Newton-like method under generalized conditions in Banach space, Transactions of A. Razmadze Mathematical Institute Vol. 174 (2020), issue 1, 15–22.
321. I.K. Argyros and S. George, Convergence analysis for single point Newton-type iterative schemes, Journal of Applied Mathematics and Computing (2020) 62:55-65, 10.1007/s12190-019-01273-y.
320. I.K.Argyros,S. George, High convergence order solvers in Banach space, Journal of Nonlinear Analysis and Optimization: Theory & Applications,11,2,111-118.
319. I.K.Argyros,S. George, Ball convergence of a novel bi-parametric iterative scheme for solving equations, Malaya Journal of Matematik, Vol. 8, 4, (2020),1228-1233.
318. I.K. Argyros,Ball comparison between three efficient three step method under common conditions, Transactions on Mathematical Programming and Applications Volume 8(2020), Number 2, 27 – 38
317. Gus Aryros, Michael Argyros I. K. Argyros, S. George, Extended local convergence for high order schemes under ω-continuity conditions, contemporary Mathematics, Volume 1 Issue 5, 2020, 485,
https://doi. org/10. 37256/cm.152020709
316. I.K.Argyros, S. George,Extending the applicability of Newton’s method for variational inequality problems under Smale-Wang-γ criteria, Analele Universitatii de Vest, Timisoara Seria Matematica – Informatica, LVII, 1, (2019), 41-- 50, DOI: 10.2478/awutm-2019-0004
315. I.K.Argyros, S. George, M. E. Shobha, Increasing the order of convergence of multistep methods for solving systems of equations under weak conditions, Analele Universitatii de Vest, Timisoara Seria Matematica – Informatica,LVII, 1, (2019), 51-- 63, DOI: 10.2478/awutm-2019-0005.
314. I.K.Argyros and S. George, Two-point methods for solving equations and systems of equations, Applicationes Mathematicae, 47,2 (2020), pp. 255-272, DOI: 10.4064/am2365-5-2018
313. I.K.Argyros,S. George, Kedarnath Senapati, Extending the applicability of inexact Newton-HSS method for solving large systems of nonlinear equations, Numerical Algorithms, (2020) 83:333--353, https: // doi.org/10. 1007/s11075- 019- 00684-z.
312. I.K. Argyros, S. George, Comparison between some sixth convergence order solvers under the same set of criteria, Probl. Anal. Issues Anal. Vol. 9 (27), No 3, 2020, pp. 54--65, DOI: 10.15393/j3.art.2020.8690
311. Gus Aryros, Michael Argyros I. K. Argyros, S. George, Extending Kantorovich's theorem on Newton's algorithm for strongly regular generalized equations, Transactions on Mathematical Programming and Applications, 8 (2020), Number 1, 83- 90.
310. Gus Aryros, Michael Argyros I. K. Argyros, S. George, Extended local convergence of Newton's algorithm for solving strongly regular generalized equations,PanAmerican Mathematical Journal, Volume 30(2020), Number 4, 81 - 88.
309. Ioannis K. Argyros , Y. J. Cho and S. George, Extending the convexity of nonlinear image of a ball appearing in optimization,Contemporary Mathematics, 1 , 4, 2020, 295.
308. I.K.Argyros,S. George, Ball convergence for a class of root-finding methods in Banach space under weak conditions, Advances and Applications in Mathematical Sciences, 19,3, 2020, 145-157.
307. Gus Aryros, Michael Argyros I. K. Argyros, Samundra Regmi, S. George, On the solution of equations by extended discretization,Computation 2020, 8, 69; doi:10.3390/computation8030069
306. Gus Aryros, Michael Argyros I. K. Argyros, Samundra Regmi, S. George, Extending the applicability of Newton's Algorithm with projections for solving generalized equations, Appl. Syst. Innov. 2020, 3, 30; doi:10. 3390/asi3030030
305. I.K. Argyros, S. George, Extended domain for fifth convergence order solver, Communications on Applied Nonlinear Analysis,27, 3, 75- 86, (2020).
304. I.K.Argyros and S. George, Ball convergence for a sixth-order multi-point method in Banach spaces under weak conditions, Applicationes mathematicae, 47,1 (2020), pp. 133–144.
303. I.K.Argyros,S. George and Daya Ram Sahu, Extensions of the Kantorovich-type theorems for Newton's method, Applicationes Mathematicae, 47,1 (2020), pp. 145–153.
302. Samundra Regmi, I. K. Argyros, S. George, Direct comparison between two third convergence order schemes for solving equations, Symmetry 2020, 12, 1080; doi:10.3390/sym12071080.
301. Samundra Regmi, I. K. Argyros, S. George, Local comparison between two ninth convergence order schemes for equations, Algorithms 2020, 13, 147; doi:10.3390/a13060147.
300. I.K.Argyros and S. George, Ball convergence theorem for inexact Newton methods in Banach space, CREAT. MATH. INFORM.29 (2020), No. 2,113-120.
299. I.K. Argyros,High convergence order q-step methods for solving equations and systems of equations, Contemporary Mathematics, Volume 1 Issue 1,(2020), 102-109.
298. I.K.Argyros,S. George, Extended Newton Conditional Gradient Method for Constrained Systems, Transactions on Mathematical Programming and Applications, 8(2020), Number 1, 31 40.
297. I.K.Argyros,S. George, Improving the radius of convergence for the Traub's method for multiple roots, Communications on Applied Nonlinear Analysis, 27, 3,1-10, (2020).
296. I.K.Argyros,S. George, Convergence analysis of some iterative methods using tangential-like conditions, PanAmerican Mathematical Journal Volume 30 (2020), Number 3, 13- 20.
295. S. George,I. K. Argyros, Ball convergence theorems for iterative methods under weak conditions, Advances in Nonlinear Variational Inequalities, Volume 23 (2020), Number 2, 1- 14.
294. S. George,I. K. Argyros, Local unified convergence for a generalized class of iterative schemes, Transactions on Mathematical Programming and Applications,8 (2020), Number 1, 23 - 30.
293. I.K.Argyros,S. George, On an iterative method without inverses of derivatives for solving equations, Advances in the Theory of Nonlinear Analysis and its Applications 4 (2020) No. 2, 67–76.
292. S. George , Sreedeep C.D and Argyros I. K, Newton-Kantorovich regularization method for nonlinear ill-posed equations involving m-accretive operators in Banach spaces, Rendiconti del Circolo Matematico di Palermo Series 2 (2020) 69:459-473
https://doi.org/10.1007/s12215-019-00413-4
291. I.K.Argyros and S. George, Ball convergence theorems for J.Chen's one step third-order iterative methods under weak conditions, PanAmerican Mathematical Journal Volume 30 (2020), Number 1, 63 - 72.
290. I.K.Argyros,S. George,Extending the radius of convergence for a class of Euler-Halley type methods, J. Numer. Anal. Approx. Theory, vol. 48 (2019) no. 2, pp. 137--143.
289. Argyros, I.K., George, S. Extending the Applicability of a Seventh Order Method Without Inverses of Derivatives Under Weak Conditions. Int. J. Appl. Comput. Math 6, 4 (2020) doi:10.1007/s40819-019-0760-6
288. K. Kanagaraj, G.D. Reddy and S. George, Discrepancy Principles for fractional Tikhonov regularization method leading to optimal convergence rates, J. Appl. Math. Comput., (2020) 63:87--105, DOI 10.1007/s12190-019-01309-3
287. Ioannis K. Argyros; S. George; Yi-bin Xiao Cho, Local convergence of inexact Newton method under weak and center-weak Lipschitz conditions, Acta Mathematica Scientia, 2020,40B(1): 199–210
https://doi.org/10. 1007/s10473-020-0113-0.
286. I.K.Argyros,S. George, On the complexity of extending the convergence region for Traub's method, Journal of Complexity 56 (2020) 101423,
https://doi. org/10. 1016/j.jco.2019.101423
285. I.K. Argyros, S. George and M. E. Shobha, Extending the applicability of high-order iterative schemes under Kantorovich hypotheses and restricted convergence regions, Rendiconti del Circolo Matematico di Palermo Series 2, 69(3),(2020), pp. 1107-1113,
https://doi.org/10.1007/s12215-019-00460-x.
284. S. George and K. Kanagaraj, Derivative free regularization method for nonlinear ill-posed equations in Hilbert scales, Comput. Methods Appl. Math. 19 (2019), no. 4, 765–778.
283. I.K. Argyros and S. George, Newton variants for solving equations in Banach space using restricted convergence regions,Canad. J. Appl. Math. 1 (2019), no. 1, 40–50.
282. I.K.Argyros,S. George, Local convergence analysis for Jarratt-type schemes for solving equations, Applied Set-Valued Analysis and Optimization , 1(2019),53-62.
281. Ioannis K. Argyros, Yeol Je Cho, S. George and Yi-bin Xiao, Expanding the applicability of an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, (2019) 113:2813--2826,
https://doi.org/10.1007/s13398-019-00657-w
280. I.K.Argyros,S. George, Local comparison of two sixth order solvers in Banach space under weak conditions, Advances in the Theory of Nonlinear Analysis and its Applications, 3(2019) No. 3, 220-230., https: //doi. org/10.31197/atnaa.581855.
279. K. Kanagaraj and S. George, Three parameter choice strategies for weighted simplified regularization method for ill-posed equations, Math. Inverse Probl. 2019 6:1
277. I.K.Argyros,S. George, Seventh convergence order solvers free of derivatives for solving equations in Banach space, MathLAB Journal Vol 3 (2019), 118-127.
276. I.K.Argyros,S. George,Extending the applicability of an efficient fifth order method under weak conditions in Banach space, MathLAB Journal Vol 2 No 1 (2019), 63-72.
275. I.K.Argyros,S. George,G Chandhini, A. A. Magrenan, Extended convergence analysis of the Newton-Hermitian and Skew-Hermitian Splitting method, Symmetry 2019, 11, 981; doi:10.3390/sym11080981.
274. I.K.Argyros,S. George, Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions, Comment.Math.Univ.Carolin. 60, 2 (2019) 219--229.
273. I.K.Argyros and S. George,Local convergence for a quadrature based third-order method using only the first derivative, Applied Mathematics E-Notes, 19(2019), 220--227.
272. I.K.Argyros,S. George,Local convergence analysis of two competing two-step iterative methods free of derivatives for solving equations and systems of equations, Math. Commun. 24(2019), 263--276.
271. Ioannis K. Argyros and S. George, Expanding the applicability of an iterative regularization methods for ill-posed problems, J. Nonlinear Var. Anal. 3 (2019), No. 3, pp. 257--275.
270. I.K.Argyros and S. George, Unified convergence analysis of frozen Newton-like methods under generalized conditions, Journal of Computational and Applied Mathematics, 347, (2019) 95--107. DOI: 10.1016/j.cam.2018.08.010
269. I.K.Argyros and S. George, Ball convergence of an eighthorder- iterative scheme with high efficiency order in Banach Space, J. Nonlinear Anal. Optim. Vol. 10(1) (2019), 1-10
268. I.K.Argyros,S. George, and Shobha M Erappa, Local Convergence of a novel eighth order method under hypotheses only on the first derivative, Khayyam J. Math. 5 (2019), no. 2, 96--107.
267. I.K.Argyros and S. George, Extended semi-local convergence of Newton's method using the center Lipschitz condition and the restricted convergence domain, Fundamental Journal of Mathematics and Applications, Fundamental Journal of Mathematics and Applications, 2 (1) (2019) 5--9.
266. C. D. Sreedeep, S. George and I. K. Argyros, Extended Newton-type iteration for nonlinear ill-posed equations in Banach space, J. Appl. Math. Comput., 60(1-2), (2019), pp. 435-453 ,
https://doi.org/10.1007/s12190-018-01221-2.
265. I.K.Argyros,S. George, A. A. Magrenan, Improved semi-local convergence of the Newton-HSS method for solving large systems of equations, Applied Mathematics Letters, 98, (2019), 29-35,
https://doi. org/10. 1016/j. aml.2019.04.032
264. I.K.Argyros, Cho and S. George, Improved local convergence analysis for a three point method of convergence order 1.839⋯, Bull. Korean Math. Soc. 56 (2019), No. 3, pp. 621--629.
https://doi.org/ 10.4134/ BKMS.b180429
263. I.K.Argyros and S. George, Convergence for variants of Chebyshev-Halley methods using restricted convergence domains, Applicationes Mathematicae, 46, 1(2019), 115-126..
262. V. Shubha, S. George and P. Jidesh, Third-order derivative-free methods in Banach Spaces for nonlinear ill-posed equations, Journal of Applied Mathematics and Computing, (2019), 61:137--153,
https://doi.org/10.1007/s12190-019-01246-1
261. I.K.Argyros,S. George, Local Convergence comparison between two novel sixth order methods for solving equations, Ann. Univ. Paedagog. Crac. Stud. Math. 18 (2019), 5-19, DOI: 10.2478/aupcsm-2019-0001.
260. I.K. Argyros and S. George, A Broyden-type Banach to Hilbert space scheme for solving equations, PanAmerican Mathematical Journal, Volume 29 (2019), Number 2, 93 -- 103.
259. I.K.Argyros,S. George, Extended semi-local convergence of Newton's method on Lie groups using restricted regions, Communications on Applied Nonlinear Analysis, Volume 26(2019), Number 2, 91-102.
258. K. Argyros and S. George, On the convergence region of multi-step Chebyshev-Halley-type schemes for solving equations, Earthline Journal of Mathematical Sciences,Volume 1, Number 2, 2019, Pages 187-207.
257. I.K. Argyros and S. George, Semi-local convergence of an Ulm-like method under ω-type and restricted convergence domain conditions II, Transactions on Mathematical Programming and Applications, Volume 7(2019), Number 1, 25- 30.
256. I.K.Argyros,S. George, Convergence of derivative free iterative methods, CREAT. MATH.INFORM., 28 (2019), No. 1,19 - 26.
255. I.K.Argyros,S. George, Unified convergence for multi-point super Halley-type methods with parameters in Banach space, Indian J. Pure Appl. Math., 50(1): 1-13, March 2019
253. I.K.Argyros and S. George, Kantorovich-like convergence theorems for Newton's method using restricted convergence domains; Numerical Functional Analysis And Optimization; 40:3 (2019), 303-318, https: //doi.org/ 10.1080/ 01630563. 2018. 1554582.
252. I.K. Argyros, S. K. Khattri and S. George, Local convergence of an at least sixth order method in Banach spaces, J. Fixed Point Theory Appl. (2019) 21:23,
https://doi.org/10. 1007/s11784-019-0662-6.
251. I.K.Argyros and S. George, Ball convergence theorems for general iterative procedure and their applications,Southeast Asian Bulletin of Math, ol.42(3) (2018) page: 315-326.
250. I.K.Argyros,S. George, Ball comparison of three methods of convergence order six under the same set of conditions, J. Nonlinear Anal. Optim. Vol. 9(2) (2018), 129—138
249. I.K.Argyros,S. George, Ball comparison between Jarratt's and other fourth order method for solving equations, Cubo (Temuco) 20 (3), 65--79.
248. I.K.Argyros,S. George, Expanding the applicability of generalized high convergence order methods for solving equations, Khayyam Journal of Mathematics, 4(2), (2018), pp. 167-177 .
247. I.K. Argyros and S. George, Local convergence of an Ulm-like method under ω-type and restricted convergence domain conditions, Communications on Applied Nonlinear Analysis, 25(4), pp. 85-97.
246. I.K.Argyros and S. George, Semilocal convergence analysis a fifth-order method using recurrence relation in Banach space under weak conditions, Applicationes Mathematicae 45 (2018) , 223-231 , DOI: 10.4064/am2318-1-2017.
245. I.K.Argyros,S. George, Unified semi-local convergence for k-step iterative methods with flexible and frozen linear operator, Computational Methods in Analysis and Applications, Mathematics, 6(11), (2018), 233
244. I.K.Argyros,S. George, Extending the applicability of the super-Halley-like method using ω-continuous derivatives and restricted convergence domains, Annales Mathematicae Silesianae 33 (2019), 21–40, DOI: 10.2478/amsil-2018-0008.
243. I.K.Argyros,S. George, Local convergence analysis of an efficient fourth order weighted-Newton method under weak conditions, Analele Universitatii de Vest, Timisoara Seria Matematica- Informatica , LVI, 1, (2018), 23-- 34.
242. Ioannis K. Argyros and S. George, Local convergence for composite Chebyshev-type methods, Communications in Advanced Mathematical Sciences, 1(1), (2018), 1-5.
241. I.K.Argyros and S. George, Improved Semi-local convergence of the Gauss-Newton method for systems of equations, journal of Mathematical Sciences and Modelling, 1(1), (2018), 1-9.
240. Ioannis K. Argyros, Yeol Je Cho and Santhosh George, Extended convergence of Gauss-Newton's method and uniqueness of the solution, Carpathian J. Math., 34 (2018), No. 2, 135-- 142.
239. I.K.Argyros and S. George, A unified local convergence for two-step Newton-type methods with high order of convergence under weak conditions, Sohag J. Math., 5, No. 2, 1--8, (2018)
238. I.K.Argyros,S. George, Enlarging the radius of convergence for the Halley method to solve equations with solutions of multiplicity under weak conditions, Res Rep Math, 2018, 2:1
237. I.K.Argyros,S. George, Improved complexity of a homotopy method for locating an approximate zero, Punjab University Journal of Mathematics (ISSN 1016-2526), Vol. 50(2)(2018) pp. 1--10.
236. I.K. Argyros, S. K. Khattri and S. George, An improved semilocal convergence analysis for the Halley method, Advances in Nonlinear Variational Inequalities, Volume 21 (2018), Number 2, 1 -- 17.
235. I.K.Argyros and S. George, Semi-local convergence of a Newton-like method for solving equations with a singular derivative, Creat. Math. Inform., 27 (2018), No. 1,01 -- 08.
234. I.K.Argyros,S. George, Local convergence for fifth order Traub-Steffensen-Chebyshev-like composition free of derivatives in Banach space, Numer. Math. Theor. Meth. Appl. 11,1, (2018), pp. 160--168.
233. I.K.Argyros,S. George, Enlarging the Ball convergence for the modified Newton method to solve equations with solutions of multiplicity under weak conditions, Numer. Math. Theor. Meth. Appl. 11,3, (2018), pp.506--517.
232. I.K.Argyros,S. George, Expanding the applicability of generalized high convergence order methods for solving equations, Khayyam J. Math. 4 (2018), no. 2, 167--177, DOI: 10.22034/kjm. 2018. 63368
231. I.K.Argyros,S. George, On the complexity of choosing majorizing sequences for iterative procedures, Revista de la Real Academia de Ciencias Exactas, F'isicas y Naturales. Serie A. Matem'ticas, DOI 10.1007/s13398-018-0561-5.
230. K. Argyros, S. K. Khattri and S. George,On a new semilocal convergence analysis for the Jarratt method, PanAmerican Mathematical Journal, 28(2), pp. 72--90.
229. I.K. Argyros, H. Ren and S. George, Convergence ball of Muller's method for non-differentiable functions, PanAmerican Mathematical Journal, 28(2), (2018), pp. 63--71 .
228. I.K.Argyros,S. George, Improved secant-updates of rank 1 in Hilbert space, Advances in Nonlinear Variational Inequalities, Volume 21 (2018), Number 2, 49 -- 54.
226. I.K.Argyros,S. George, Increasing the order of convergence for iterative methods in Banach space under weak conditions,Malaya Journal of Matematik, Vol. 6, No. 2, 396--401, 2018.
225. I.K.Argyros,S. George, Extended optimality of secant methods on Banach space, Commun. Optim. Theory 2018 (2018), Article ID 3, 1-6.
224. I.K.Argyros,S. George, Local convergence for an almost sixth order method for solving equations under weak conditions, SeMA J. 75 (2018), no. 2, 163--171, DOI 10.1007/s40324-017-0127-z
223. I.K.Argyros,S. George, Ball convergence of some iterative methods for nonlinear equations in Banach space under weak conditions, Revista de la Real Academia de Ciencias Exactas, RACSAM (2018) 112:1169--1177, DOI 10.1007/s13398-017-0420-9
222. M. Sabari and S. George, Modified minimal error method for nonlinear ill-posed problems, CMAM, 18(2), 2018, 313-321, DOI:10.1515/cmam-2017-0024.
221. I.K.Argyros,S. George, Local convergence for a Chebyshev-type method in Banach space free of derivatives, Advances in the Theory of Nonlinear Analysis and its Applications, 2 (2018) No. 1, 62--69.
220. I.K.Argyros and S. George, Local convergence of a Hansen-Patrick-like family of optimal fourth order methods, TWMS J. Pure Appl. Math., V.9, N.1, 2018, pp.32--39.
219. I.K.Argyros, S. George, Local convergence for a family of sixth order Chebyshev-Halley -type methods in Banach space under weak conditions, Khayyam J. Math. 4 (2018), no. 1, 1- 12, DOI: 10.22034/kjm.2017.51873
218. I.K.Argyros , S. George , Local Convergence of a multi-point family of high order methods in Banach spaces under Holder continuous derivative, International Journal of Advances in Mathematics, Volume 2018, Number 2, Pages 53--60, 2018..
217. S. George and C. D. Sreedeep, Lavrentiev's regularization method for nonlinear ill-posed equations in Banach spaces,Acta Mathematica Scientia, 2018,38B(1):303--314.
216. S. George and M. Sabari, Numerical approximation of a Tikhonov type regularizer by a discretized frozen steepest descent method, Journal of Computational and Applied Mathematics,330, 1 (2018), 488--498, 10.1016/ j.cam. 2017. 09.022
215. I.K.Argyros,S. George, Local convergence of Bilinear operator free methods under weak conditions, Mat. Vesnik 70 (2018), no. 1, 1--11.
214. I.K.Argyros and S. George, Ball convergence for an inverse free Jarratt-type method under Holder conditions,Int. J. Appl. Comput. Math., 3 (1), (2017), 157--164, DOI 10.1007/s40819-015-0095-x.
213. S. George and M. T. Nair, A Derivative--free Iterative Method for Nonlinear Ill-Posed Equations with Monotone Operators, Journal of Inverse and Ill-Posed Problems,25,5 (2017), 543--551. DOI: 10.1515/jiip-2014-0049.
212. Ioannis K. Argyros , Santhosh George and Monnanda Erappa Shobha, On the semi-local convergence of Two-Step Newton Tikhonov Methods for Ill-Posed Problems under weak conditions, Transactions on Mathematical Programming and Applications, Volume 5(2017), Number 1, 1-- 24.
211. I.K.Argyros and S. George, Expanding the applicability of the Kantorovich's theorem for solving generalized equations using Newton's method, nt. J. Appl. Comput. Math (2017) 3:3295--3304. DOI 10.1007/s40819-016-0297-x.
210. I.K.Argyros,S. George, Extended local convergence analysis of inexact Gauss-Newton method for singular systems of equations under weak conditions, Stud. Univ. Babe-Bolyai Math., 62(2017), No. 4, 547--562, DOI: 10.24193/subbmath.2017.4.11
209. I.K.Argyros,S. George, Ball convergence of the Laguerre-like method for multiple zeros, International Journal of Advances in Mathematics, Volume 2017, 6, (2017), 114--122.
208. I.K.Argyros,S. George, Extending the convergence domain of Newton's method for generalized equations, Serdica Math. J., 43 (2017), 65—78
207. I.K.Argyros and S. George,Improved Convergence Conditions of a Lavrentiev-Type Method for Nonlinear Ill-posed Equations by Using Restricted Convergence Domains, Annales Univ. Sci. Budapest., Sect. Comp. 46 (2017), 355--371.
206. I.K.Argyros and S. George, On Newton'S Method For Subanalytic Equations, J. Numer. Anal. Approx. Theory, vol. 46 (2017) no. 1, pp. 25--37.
205. I.K.Argyros, P. Jidesh and S. George, On the local convergance of Newton-Like Methods with Fourth and Fifth--order of Convergence Under Hypotheses only on the First Frechet Derivative, Novi Sad J. Math., Vol. 47, No. 1, 2017, 1-15.
204. I.K.Argyros, P. Jidesh and S. George, Improved robust semi-local convergance analysis of Newton's method for cone inclusion problem in Banach spaces under restricted convergance domains and majorant conditions,Nonlinear Functional Analysis and Applications, Vol. 22, No. 2 (2017), pp. 421—432
203. I.K.Argyros and S. George, Ball Connvergence of Newton's method for generalized equations using restricted convergence domains and majorant conditions, Nonlinear Functional Analysis and Applications, Vol. 22, No. 3 (2017), pp. 485--494.
202. I.K.Argyros and S. George, Local convergence for a frozen family of Steffensen-like methods under weak conditions , Research in Applied Mathematics, vol. 1 (2017), Article ID 101259, 8 pages, doi:10.11131/2017/101259
201. Santhosh George, Vorkady.S.Shubha and P. Jidesh., Convergence of a Tikhonov Gradient type-method for nonlinear ill-posed equations, International Journal of Applied and Computational Mathematics, 2017, Volume 3, Supplement 1, pp 1205--1215
https://doi.org/10.1007/s40819-017-0411-8.
200. I.K.Argyros,S. George, Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative, Ann. Univ. Paedagog. Crac. Stud. Math. 16 (2017), 41-50 DOI: 10.1515/aupcsm-2017-0003
199. I.K.Argyros, Stefan Muruster, S. George, On the convergence of Stirling's method for fixed points under not necessarily contractive hypotheses, Int. J. Appl. Comput. Math, 2017, 3, 1, pp. 1071--1081 DOI 10.1007/s40819-017-0401-x
198. I.K.Argyros,S. George, Extended and unified local convergence for Newton-Kantorovich method under w- conditions, WSEAS Transactions on MathematicsVolume 16, 2017, Pages 248--256.
197. I.K.Argyros, S. George and M. E. Shobha, Inexact Newton's method to nonlinear functions with values in a cone using restricted convergence domains, Int. J. Appl. Comput. Math, 2017, 3, 1, pp 953--959, DOI 10.1007/s40819-017-0392-7.
196. I.K.Argyros,S. George, Local convergence of a fast Steffensen-type method on Banach space under weak conditions, Int. J. Computing Science and Mathematics, Vol. 8, No. 6, 2017, 495-505.
195. Santhosh George and M. Sabari, Error estimate for modified steepest descent method for nonlinear ill-posed problems under holder-type source condition, Mathematical Inverse Problems, Vol. 4, No. 1 (2017), 1-11
194. I.K.Argyros and S. George, Ball convergence theorem for a Steffensen-type third-order method, Revista Colombiana de Matematicas, Volumen 51(2017)1, 1-14, DOI 10.1007/s13398-017-0420-9
193. I.K.Argyros,S. George, Higher order derivative-free iterative methods with and without memory in Banach space under weak conditions, Bangmod Int. J. Math. & Comp. Sci., Vol. 3, No. 1-2, 2017; Pages 25-- 34.
http://bangmod-jmcs.kmutt.ac.th/
192. I.K.Argyros and S. George, Expanding applicability of efficient Steffensen-type algorithms for nonlinear equations, Advances and Applications in Mathematical Sciences, 16.4, (2017), 121-131.
191. I.K.Argyros and S. George, Expanding the applicability of Steffensen's method using restricted convergence domains,Advances and Applications in Mathematical Sciences, 16, 4,(2017), 133-150.
190. I.K.Argyros, Soham M. Sheth, Rami M. Younis A. Alberto Magrenan and S. George, Extending The Mesh Independence For Solving Nonlinear Equations Using Restricted Domains, Int. J. Appl. Comput. Math, 2017, 3, 1, pp 1035--1046, DOI 10.1007/s40819-017-0398-1
189. I.K.Argyros and S. George, A convergence of a Steffensen-like method for solving nonlinear equations in a Banach space, CREAT. MATH. INFORM. 26 (2017), No. 2, 125—136’
188. I.K.Argyros and S. George, Local results for an iterative method of convergence order six and efficiency index 1.8171, Novi Sad J. Math.Vol. 47, No. 2, 2017, 19--29.
187. G. A. Anastassiou, I.K. Argyros and S. George, Proximal methods with invexity and fractional calculus, PanAmerican Mathematical Journal Volume 27(2017), Number 2, 84 - 89.
186. I.K.Argyros and S. George, A study on the local convergence of a Steffensen-King-type iterative method, Nonlinear studies, Vol. 24, No. 2, pp. 285--295, 2017
185. I.K.Argyros, S. George and P Jidesh, Iterative Regularization methods for ill-posed Operator Equations in Hilbert scales, Nonlinear studies,Vol. 24, No. 2, pp. 257--271, 2017
184. I.K.Argyros and S. George, Expanding the applicability of inexact Newton methods using restricted convergence domains, Applicationes Mathematicae 44 (2017) , 123-133, DOI: 10.4064/am2292-3-2016
183. I.K.Argyros and S. George, Local convergence of some high order iterative methods based on the decomposition technique using only the first derivative, Surveys in Mathematics and its Applications, 12, (2017), 51--63.
182. I.K.Argyros and S. George, Local convergence of Jarratt-type methods with less computation of inversion under weak conditions, Mathematical Modelling and Analysis, Volume: 22, Issue: 02(2017), pages 228 -- 236.
181. I.K.Argyros and S. George, Local convergence of deformed Euler-Halley-type methods in Banach space under weak conditions, Asian-European J. Math. 10, 1750086 (2017) [9 pages], https: //doi. org/10. 1142/S1793557117500863
180. I.K.Argyros,S. George, On the convergence of Broyden's method with regularity continuous divided differences and restricted convergence domains, J. Nonlinear Funct. Anal. 2017 (2017), Article ID 21, pp 1-10.
179. I.K.Argyros and S. George, Expanding the applicability of the Gauss-Newton method for convex optimization under restricted convergence domains and majorant condition, Nonlinear Functional Analysis and Applications,Vol. 22, No. 1 (2017), 197—207
178. I.K.Argyros and S. George,Improved convergence analysis for the Kurchatov method, Nonlinear Functional Analysis and Applications, Vol. 22, No. 1 (2017), 41--58.
177. I.K.Argyros and S. George, Local convergence of a two-step Newton-Secant method for equations with solutions of multiplicity greater than one,PanAmerican, 27,1, (2017), 15-- 28.
176. I.K.Argyros,S. George, Extending the local Convergence of some iterative methods based on quadrature formulas on Banach spce under weak conditions, Transactions on Mathematical Programming and Applications, Volume 5(2017), Number 1, 51-- 59.
175. I.K.Argyros,S. George, Unified local convergence for some high order methods with one parameter, Global Journal of Science Frontier Research" GJSFR-F Volume 17, Issue 8. , Version 1.0 Year 2017, 51--58.
174. I.K.Argyros and S. George, Ball convergence for two-parameter Chebyshev-Halley-like methods in Banach space using hypotheses only on the first derivative, Communications on Applied Nonlinear Analysis, Vol.24(2017), 1, 72 -- 81.
173. I.K.Argyros, S. George and M. E. Shobha, Expanding the applicability of the generalized Newton Method for generalized equations, Commun. Optim. Theory 2017 (2017), Article ID 12.
172. I.K.Argyros and S. George, On the convergence of Newton-like methods using restricted domains, Numer Algor (2017) 75:553-567, 10.1007/s11075-016-0211-y.
171. I.K. Argyros, S. George and M. E. Shobha, Cubic convergence order yielding iterative regularization methods for ill-posed Hammerstein type operator equations, Rend. Circ. Mat. Palermo, II. Ser (2017) 66:303–323, DOI 10.1007/s12215-016-0254-x.
170. I.K.Argyros, S. George, Local convergence of a fifth convergence order method in Banach space, Arab J Math Sci 23 (2017) 205--214, http:// dx.doi.org/ 10.1016/ j.ajmsc. 2016.10.002
169. I.K.Argyros, S. George and M. E. Shobha, Ball Convergence for an eighth order efficient method under weak conditions in Banach spaces, SeMA (2017) 74:513–521,
https://doi.org/10.1007/s40324-016-0098-5
168. I.K.Argyros and S. George, Improved convergence analysis for King-Werner-like methods free of derivatives using restricted convergence domains, Commun. Optim. Theory 2017 (2017), Article ID 1.
167. I.K.Argyros and S. George, Extending the applicability of Newton's method using Wang's-- Smale's α-theory, Carpathian Journal of Mathematics, 33 (2017), No. 1, 27 -- 33.
166. S. George amd M. Shabari , Convergence rate results for steepest descent type method for nonlinear ill-posed equations, Applied Mathematics and Computation, 294 (2017) 169--179.
165. I.K.Argyros and S. George, Ball convergence results for a method with memory of efficiency index 1.8392 using only functional values, J ournal of N onlinear A nalysis and O ptimization, Vol. 7, No. 2, (2016), 91--96.
164. I.K.Argyros,S. George, Local convergence for Jarratt-like iterative methods in Banach space under weak conditions, J ournal of N onlinear A nalysis and O ptimization, Vol. 7, No. 2, (2016), 17--25.
163. I.K.Argyros and S. George, Improved convergence for King-Werner-type derivative free methods, J ournal of N onlinear A nalysis and O ptimization, Vol. 7, No. 2, (2016), 97--103.
162. I.K.Argyros, P. Jidesh and S. George,Ball Convergence for a third order method based on Newton's method and the Adomian decomposition method, Int. J. Convergence Computing, Vol. 2, Nos. 3/4, 2016.
161. I.K.Argyros and S. George, Ball convergence for a computationally efficient fifth-order method for solving equations in Banach space under weak conditionsm, Bangmod Int.J. Math.& Comp.Sci.Vol. 2, No. 1-2, 2016; Pages 118 -- 126.
160. I.K.Argyros and S. George, Extending the applicability of Newton-secant methods for functions with values in a cone, Serdica Math. J. 42 (2016), 287--300.
159. I.K.Argyros and S. George, Expanding the applicability of the shadowing lemma for operators with chaotic behaviour using restricted convergence domains, Nonlinear Functional Analysis and Applications, Vol. 21, No. 4 (2016), pp. 591--596.
158. I.K.Argyros and S. George, Ball convergence of an iterative method for nonlinear equations based on the decomposition technique under weak conditions, Annales Univ. Sci. Budapest., Sect. Comp. 45 (2016) 291--301.
157. I.K.Argyros and S. George, Local Convergance for a derivative free method of order three under Week Conditions, Int. J. Convergence Computing, Vol. 2, No. 1, 2016, 41--53.
156. I.K.Argyros and S. George (2015), Local convergence for an efficient eighth order iterative method with a parameter for solving equations under weak conditions, Int. J. Appl. Comput. Math (2016) 2:565-574, DOI 10.1007/s40819-015-0078-y.
155. I.K.Argyros, S.K. Khattri and S. George, On the Local Convergence of a Secant Like Method in a Banach Space Under Weak Conditions, PanAmerican Mathematical Journal, Volume 26(2016), Number 4, 89 - 99.
154. I.K.Argyros, Soham M. Sheth, Rami M. Younis and S. George,The Asymptotic Mesh Independence Principle of Newton's Method Under Weaker Conditions, PanAmerican Mathematical Journal, Volume 26 (2016), Number 4, 44—56
153. I.K.Argyros and S. George, Extending the applicability of a new Newton-like method for nonlinear equations, Communications in Optimization Theory 2016 (2016), Article ID 14.
152. I.K.Argyros and S. George, Extending the applicability of Newton's method for sections on Riemannian manifolds using restricted convergence domains, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 37.
151. I.K.Argyros and S. George, Local convergence analysis of inexact Gauss-Newton method for singular systems of equations under restricted convergence domains, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 32.
150. I.K.Argyros and S. George, Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds using restricted convergence domains, J. Nonlinear Funct. Anal., 2016 (2016), Article ID 27.
149. I.K.Argyros and S. George, Ball convergence for a novel sixth order iterative methods under hypothesis only on the first derivative, Nonlinear Studies accepted, Vol. 23, No. 2, pp. 263-271, 2016.
148. I.K.Argyros and S. George, Local convergence of some fifth and sixth order iterative methods,Nonlinear Functional Analysis and Applications, Vol. 21, No. 3 (2016), pp. 413-424.
147. I.K.Argyros and S. George, Unified Convergence domains of Newton-like methods for solving operator equations, Applied Mathematics and Computation, 286 (2016) 106--114.
146. V. S. Shubha, S. George and P. Jidesh, Finite dimensional realization of a Tikhonov gradient type-method under weak conditions, Rend. Circ. Mat. Palermo, II. Ser (2016) 65:395–410, DOI 10.1007/s12215-016-0241-2.
145. I.K.Argyros and S. George, Ball convergence of a novel Newton-Traub composition for solving equations, cogent math, http: //dx.doi.org/ 10.1080/ 23311835.2015.1155333.
144. I.K.Argyros and S. George, On the Gauss-Newton method for convex optimization using restricted convergence domains, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 5.
143. I.K.Argyros and S. George, Ball convergence for Traub-Steffensen like methods in Banach space, Analele Universi Timioara Seria Matematic – Informatic LIII, 2, (2015), 3– 16
142. I.K.Argyros and S. George,Local convergence for a family of cubically convergent methods in Banach space, Nonlinear Functional Analysis and Applications, Vol. 21, No. 2 (2016), pp. 263--272.
141. I.K.Argyros, Yeol Je Cho and S. George, Local convergence for some third-order iterative methods under weak conditions, J. Korean Math. Soc. 53 (2016), No. 4, pp. 781--793.
140. I.K.Argyros and S. George, Extending the applicability of Efficient Steffensen-type algorithms for solving nonlinear equations, Advances and Applications in Mathematical Sciences, Vol. 15, 1,(2016), pp 13--23.
139. I.K.Argyros and S. George, Ball convergence for a novel-fourth order method for solving systems of equations, AJOMCOR, vol.11,2 (2016), 147--154.
138. I.K.Argyros and S. George, Extending the applicability of the Gauss–Newton method for convex composite optimization using restricted convergence domains and average Lipschitz conditions, SeMA SeMA (2016) 73:219–236, DOI 10.1007/s40324-016-0066-0.
137. I.K.Argyros and S. George, Local convergence of inexact Gauss-Newton-like method for least square problems under weak Lipschitz condition, Communications on Applied Nonlinear Analysis, Volume 23(2016), Number 1, 56 - 70.
136. I.K.Argyros and S. George, On the convergence of inexact Gauss-Newton method for solving singular equations, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 1, 1--22.
135. I.K.Argyros and S. George, Extended local analysis of inexact Gauss-Newton-like method for least square problems using restricted convergence domains, Annals of the West University of Timisoara – Mathematics and Computer Science, LIV, 1, (2016), 17-- 33.
134. Ioannis K. Argyros, Santhosh George and Monnanda Erappa Shobha Discretized Newton-Tikhonov Method for ill-posed Hammerstein Type Equations, Communications on Applied Nonlinear Analysis, Volume 23(2016), Number 1, 34—55
133. I.K.Argyros and S. George, Local convergence for a family of Chebyshev-Halley-Like methods under relaxed conditions in Banach space, Transactions on Mathematical Programming and Applications, Volume 4(2016), Number 1, 1 – 12
132. I.K.Argyros and S. George, On a result by Dennis and Schnabel for Newton's method: Further improvements, Applied Mathematics Letters 55 (2016) 49–53.
131. I.K.Argyros, P. Jidesh and S. George, Ball Convergence for Second Derivative Free Methods in Banach space, I.J. Appl. Comput. Maths DOI 10.1007/s40819-015-0125-8.
130. I.K.Argyros and S. George, Improved local convergence for Euler-Halley-like methods with a parameter, Rend. Circ. Mat. Palermo (2016) 65:87–96, DOI 10.1007/s12215-015-0220-z.
129. I.K.Argyros and S. George, Ball convergence of a sixth order iterative method with one parameter for solving equations under weak conditions, Calcolo, Volume 53, Issue 4, pp 585-- 595, DOI 10.1007/s10092-015-0163-y
128. I.K.Argyros, S. George and M.E. Shobha, Local Converegence Of Sixth-Order Newton-Like Methods Based On Stolarsky And Gini Means, AJOMCOR , Vol.8, 4(2016), 306-316.
127. I.K.Argyros and S. George, Improvements of the local convergence of Newton's method with fourth-order convergence, Asian Journal of Mathematics and Computer Research, Vol 7, 1(2016), 9--17.
126. Vorkady.S.Shubha, Santhosh George, P. Jidesh and M. E. Shobha(2015), Finite dimensional realization of a quadratic convergence yielding iterative regularization method for ill-posed equations with monotone operators, Applied Mathematics and Computation,273 (2016) 1041–1050.
125. I.K.Argyros and S. George, Expanding the applicability of the Gauss-Newton method for a certain class of systems of equations, J. Numer. Anal. Approx. Theory, vol. 45 (2016) no. 1, pp. 3--13.
124. I.K.Argyros and S. George,Local convergence for inverse free Jarratt-type method in Banach space under Holder conditions, Communications on Applied Nonlinear Analysis, Volume 23(2016), Number 4, 72 --81.
123. I.K.Argyros and S. George, Ball convergence of some fourth and sixth order iterative methods,Asian-European J. Math. 09(2), (2016) [13 pages] DOI: 10.1142/S1793557116500340.
122. I.K.Argyros and S. George, Local convergence of Deformed Jarratt-type Methods in Bnach space without inverses AEJM, Vol.9(1),[12pages], 2016, DOI: 10.1142/S1793557116500157.
121. I.K.Argyros and S. George(2016), Ball convergence theorems for Maheshwari-type eighth-order methods under weak conditions, São Paulo Journal of Mathematical Sciences, 10(1), pp 91--103.
120. I.K.Argyros, S. George and M.E. Shobha, Local Convergance for a Family of Iterative Methods based on Decomposition Techniques, Applicationes Mathematicae 43 (2016) , 133-143.
119. I.K.Argyros, P. Jidesh and S. George, Local Convergance of Super-Halley Type Methods with Fourth-order of Convergance Under Week Conditions, EPAM, Vol.2, 1(2015), 1--11.
118. I.K.Argyros and S. George, On a local characterization of some Newton-like methods of R-order at least three under weak conditions in Banach spaces, Journal of the Chungcheong Mathematical Society, Volume 28 , No. 4, (2015), 513--523.
http://dx.doi.org/10.14403/jcms.2015.28.4.513
117. I.K.Argyros and S. George, Local convergence of a multi-point Jarratt-type method in Banach space under weak conditions, J ournal of N onlinear A nalysis and O ptimization, Vol.6, No.2, (2015), 43--52.
116. I.K.Argyros and S. George,On the Semilocal Convergence of a two step Newton method under the gamma-condition, J ournal of N onlinear A nalysis and O ptimization, Vol.6, No.2, (2015), 73--84.
115. I.K.Argyros and S. George, Ball convergence comparison between two sixth order Newton-Jarratt composition methods, Ann.Univ.Sci.Budapest :Sect.Comput., 44 (2015) ,119--132.
114. I.K.Argyros and S. George, Ball Comparison For Variants Of Chebyshev'S Method With Third Or Fourth Order Of Convergence, Bangmod Int.J. Math.& Comp.Sci.Vol. 1, No. 2, 2015, 233-- 243.
113. I.K.Argyros and S. George, Ball convergence for higher order methods under weak conditions, J. Math. Study doi: 10.4208/jms.v48n4.15.04, Vol. 48, No. 4, pp. 362--374.
112. I.K.Argyros and S. George, Ball convergence for a ninth order Newton-type method from quadrature and adomian formulae in Banach space NFAA,20, 4(2015), 595--608.
111. I.K.Argyros and S. George (2015), Local convergence of modified Halley-like methods with less computation of inversion, Novi Sad J. Math. Vol. 45, No. 2, 2015, 47--58.
110. Ioannis K. Argyros and S. George(2014), Improved local convergence analysis of inexact Newton-like method under the majorant condition, Applicationes Mathematicae,42 (2015) , 343--357.
109. I.K.Argyros and S. George, Local convergence of a uniparametric Halley-type method in Banach space free of second derivative,ANVI, 18, 2 (2015), 48-57
108. I.K.Argyros and S.George (2015), Local convergence for a multi-point family of super-Halley methods in Banach space under weak conditions, Applicationes Mathematicae, Appl. Math. (Warsaw) 42 (2015), 193-203.
107. I.K.Argyros and S. George, Ball convergence theorem for Hansen-Patrick-type methods with third and fourth order of convergence under weak conditions, EPAM, Vol. 1, 1(2015), 1--16.
106. I.K.Argyros and S. George, On the local convergence of a Sharma-type optimal eighth-order method, EPAM, Vol.1, 1(2015), 63--78.
105. I.K.Argyros and S. George, Ball Convergence for some efficient iterative methods, EPAM, Vol. 1, 1(2015), 47--62.
104. I.K.Argyros and S. George, Iterative Regularization Methods For Nonlinear Ill-Posed Operator Equations With M-Accretive Mappings in Banach Spaces, Acta Math. Scind., Vol.35, B(6), 2015, 1318--1324.
103. I.K.Argyros and S. George(2015), Ball convergence theorems for for King's fourth-order iterative methods under weak conditions, Nonlinear Functional Analysis and Applications, Vol. 20, No. 3 (2015), pp. 419-428.
102. I.K.Argyros and S. George, A unified local convergence for Chebyshev-Halley-type methods in Banach space under weak conditions, Stud. Univ. Babes-Bolyai Math. 60(2015), No. 3, 463--470.
101. I.K.Argyros and S. George, On a sixth order Jarratt-type method in Banach spaces, Asian-European J. Math. 08, 1550065 (2015) [12 pages] DOI: 10.1142/S1793557115500655 .
100. Ioannis K. Argyros and S. George(2015), Expanding the convergence Domain of Newton--like methods and applications in Banach space, Journal of Mathematics, Vol.47(1)(2015), 1--13.
99. I.K.Argyros and S. George, Ball convergence for Steffensen-type fourth-order methods, International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, No4, (2015), 37--42.
98. I.K.Argyros and S. George(2015), Local convergence for some high convergence order Newton-like methods with frozen derivatives, SeMA Journal Boletin de la Sociedad Española de Matemática Aplicada, 70, 47--59, DOI 10.1007/s40324-015-0039-8.
97. I.K.Argyros and S. George, Local convergence for a regula falsi-type method under weak convergence, J Appl Computat Math. 2015, 4:3, http: //dx. doi. org/10.4172/2168-9679.1000217
96. I.K.Argyros and S. George, Ball convergence comparison between three iterative methods in Banach space under hypothese only on the first derivative, Applied Mathematics and Computation, Volume 266, 1 September 2015, Pages 1031—1037
95. I.K.Argyros and S. George, Ball convergence for variants of Jarratt's method, Bangmod Int.J. Math.& Comp.Sci., Vol. 1, No. 1, 2015: Pages 33-- 39,
http://bangmod-jmcs.kmutt.ac.th.
94. I.K.Argyros and S. George ,Ball comparison between two optimal eight-order methods under weak conditions, SeMA (2015) 72:1--11 , DOI 10.1007/ s40324-015-0035-z
93. I.K.Argyros and S. George, Ball convergence theorems for unified three step Newton-like methods of high convergence order, Nonlinear studies,V.22, 2, (2015), 327--339.
92. Ioannis K. Argyros and S. George(2015), Expanding the applicability of steffensen's method for finding fixed point of operators in Banach space, Serdica Math. J. 41, 2-3,(2015), 159-184.
91. I.K.Argyros and S. George (2015), A Ball Comparison Between Three Cubically Convergent Iterative Methods, Transactions on Mathematical Programming and Applications, Volume 3(2015), Number 1, 24-- 34.
90. I.K.Argyros and S. George (2015), Ball Convergence for an Efficient Ninth Order Method Free from Second Derivative for Solving Equations, Transactions on Mathematical Programming and Applications, Volume 3(2015), Number 1, 13-- 23.
89. I.K.Argyros and S.George (2015), Local Convergence of Optimal Fourth Order Methods without Memory Under Hypotheses Only up to the First Derivatives, Transactions on Mathematical Programming and Applications, Volume 3(2015), Number 1, 1-- 12.
88. I.K.Argyros and S.George (2015), The convergence ball of inexact Newton-like method in Banach space under weak Lipschitz condition, Journal of the Chungcheong Mathematical Society, Volume 28, No. 1, 2015 1--12.
87. I.K. Argyros and S. George(2015), Ball convergence theorems for eighth-order variants of Newton's method under weak conditions, Arab. J. Math. (2015) 4:81–90, DOI 10.1007/s40065-015-0128-7.
86. Ioannis K. Argyros and S. George(2015), A unified local convergence for Jarratt-type methods in Banach space under weak conditions, Thai Journal of Mathematics, Volume 13, (2015) Number 1 : 165–176.,
http://thaijmath. in. cmu. ac. th.
85. K. Argyros and S. George(2015), Local convergence for deformed Chebyshev-type method in Banach space under weak conditions, Cogent Mathematics(2015),2: 1036958
http://dx. doi.org/10. 1080/23311835.2015.1036958.
84. K. ARGYROS and S. GEORGE (2015), Ball Convergence for a Newton-Steffensen-Type Third-Order Method, Advances in Nonlinear variational Inequalities, Vol.18, No.1, (2015), 37-- 45.
83. I.K. ARGYROS, P. JIDESH and S. GEORGE (2015), An Improved Semi-local Convergence Analysis for a Three Point Method of Order 1.839 in Banach Space, Advances in Nonlinear variational Inequalities, Vol.18, No.1, (2015), 23-- 32.
82. I.K.Argyros and S. George(2015), Enlarging The Convergence Ball Of The Method Of Parabola For Finding Zero Of Derivatives, Applied Mathematics and Computation 256 (2015) 68—74.
81. I.K.Argyros and S. George(2015), Local convergence of deformed Halley method in Banach space under Holder continuity conditions, J. Nonlinear Sc. Appl. 8(2015), 246--254.
80. Ioannis K. Argyros, S. George and A. Alberto Magre, Local convergence for multi-point-parametric Chebyshev-Halley-type methods of high convergence order, Journal of Computational and Applied Mathematics 282 (2015), 215--224.
79. P. Jidesh, Vorkady.S.Shubha and Santhosh George(2015), A Quadratic Convergence Yielding Iterative Method for the Implementation of Lavrentiev Regularization Method for Ill-posed Equations, Applied Mathematics and Computation 254 (2015), 148–156.
78. I.K.Argyros,S.George and A. Alberto Magre(2015), Expanding the convergence domain for Chun-Stanica-Neta family of third order methods in Banach spaces,J. Korean Math. Soc. 52 (2015), No. 1, pp. 23–41, http: //dx.doi.org/ 10.4134/ JKMS.2015.52.1.023
77. I.K.Argyros and S. George(2014), Unified ball convergence for two-step iterative methods in Banach space, Transactions on Mathematical Programming and Applications,Volume 2(2014), Number 10, 26 - 36.
76. I.K.Argyros and S. George(2014), A unified local convergence for three-step iterative methods with optimal eight order of convergence under weak conditions, Transactions on Mathematical Programming and Applications, Volume 2(2014), Number 10, 13 - 25.
75. I.K.Argyros, P. Jidesh and S. George(2014), Ball convergence for fourteenth order iterative methods under conditions only on the first derivative, Transactions on Mathematical Programming and Applications, Volume 2(2014), Number 10, 1 - 12.
74. I.K. Argyros, S. George and M. E. Shobha(2014), Weak Convergence of Iterated Lavrentiev Regularization for Nonlinear Ill-Posed Problems, Transactions on Mathematical Programming and Applications, Volume 2(2014), Number 8, 1-- 16.
73. Ioannis K. Argyros and S. George(2014), Expanding the applicability of Newton-Tikhonov method for ill-posed equations, REVUE D’ANALYSE NUMERIQUE ET DE THEORIE DE L’APPROXIMATION(Journal of Numerical Analysis and Approximation Theory), Tome 43, No 2, 2014, pp. 141–158.
72. I.K. Argyros and S. George (2014), On extended convergence domains for the newton-kantorovich method, MATHEMATICA, Tome, 56 (79), No. 1, 3--13.
71. I.K.Argyros and S. George, On the Convergence of the Kurchatov Method Under Weak Condition, Transactions on Mathematical Programming and Applications Volume 2 (2014), Number 6, 1- - 12.
70. I.K.Argyros and S.George (2014), An analysis of Lavrentiev regularization methods and Newton-type iterative methods for nonlinear ill-posed Hammerstein-type equations, Advances in Nonlinear variational Inequalities, Vol.17, No.2, 26-42.
69. M. E. Shobha and S. George(2014), Newton type iteration for Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales, Journal of Mathematics, Volume 2014, Article ID 965097, 9 pages, http :// dx. doi.org/10.1155/2014/965097.
68. I.K.Argyros and S.George (2014), Expanding the applicability of Tikhonov's regularization for nonlinear ill-posed problems, Mathematical Inverse Problems, Vol 1, no.2, 86-100.
67. I.K.Argyros, S.George and M. Kunhanandhan(2014),Iterative Regularization methods for ill-posed Hammerstein-type Operator Equations in Hilbert scale, Studia UBB Math.m 59(2014), No.2, 247-262.
66. I.K.Argyros and S.George (2014), Local convergence of a multi-point-parameter Newton-like methods in Banach space, Nonlinear Functional Analysis and Applications, Vol. 19, No. 3 (2014), pp. 381-392
65. I.K.Argyros and S.George (2014), Expanding the Applicability of the Gauss-Newton Method for Convex Optimization under a Regularity Condition, Communications on Applied Nonlinear Analysis Volume 21(2014), no. 2, 29-44.
64. I.K.Argyros, S.George and P. Jidesh(2014) Inverse Free Iterative Methods For Nonlinear Ill-posed Operator Equations, International Journal of Mathematics and Mathematical Sciences, Volume 2014 (2014), Article ID 754154, 8 pages
http://dx.doi.org/10.1155/2014/754154.
63. I.K.Argyros and S.George (2014), Local Convergence of two competing third order methods in Banach space, Applicationes Mathematicae,41,4 (2014), pp. 341–350.
62. I.K.Argyros and S.George (2014), Expanding the applicability of Lavrentiev regularization methods for ill-posed equations under general source condition, Nonlinear Functional Analysis and Applications, Vol 19, No.2,(2014), 177-192.
61. S.George and M.E.Shobha, Newton type iteration for Tikhonov regularization of non-linear ill-posed Hammerstein type equations, J. Appl. Math. Comput.(2014), 44, 69-82, (DOI 10.1007/s12190-013-0681-1).
60. V.S. Subha, S.George and P. Jidesh(2014), A derivative free iterative method for the implementation of Lavrentiev regularization method for ill-posed equations, Numer. Algor., DOI 10.1007/s11075-014-9844-x, V. 68, 2, 2015, 289-304 .
59. S.George and I.K.Argyros (2014),On a deformed Newton’s method with third order of convergence under the gamma-condition , Advances and Applications in Mathematical Sciences, Vol.13, No. 1, 1-18.
58. V.Vasin and S.George (2014), Expanding the applicacability of Tikhonov's regularization and iterative approximation for ill-posed problems,Journal of Inverse and Ill-Posed Problems, DOI. 10.1515/jip-2013-0025.
57. V. Vasin and S. George (2014), An Analysis of Lavrentiev regularization method and Newton type process for nonlinear ill-posed problems, Appl. Math. Comput.230, 406-413.
56. I.K.Argyros and S.George (2014), On the semilocal convergence of Newton's method for sections on Riemannian manifolds, Asian-European J. Math., 07, 1450007 (2014) [17 pages] DOI: 10.1142/S1793557114500077.
55. M.E Shobha, I.K. Argyros, and S. George (2014), Newton-type iterative methods for nonlinear ill-posed Hammerstein-type equations, Appl. Math. (Warsaw) 41 (2014), 107-129, doi:10.4064 /am41-1-9.
54. Ioannis K. Argyros, Yeol Je Cho and S.Georeg(2014), On the “terra incognita” for the Newton–Kantrovich method with applications, Journal of the Korean Mathematical Society, 51(2014), 2, 251-266.
53. Ioannis K. Argyros1, Monnanda Erappa Shobha and Santhosh George (2014), Expanding the applicability of a Two Step Newton-type projection method for ill-posed problems, Funct. Approx. Comment. Math. Volume 51, Number 1 (2014), 141-166.
52. S.George and I.K.Argyros (2014), On the semilocal convergence of modified Newton-Tikhonov regularization method for nonlinear ill-posed problems, Nonlinear Functional Analysis and Applications, Vol. 19, No. 1, pp. 99-111.
51. I.K.Argyros and S.George(2014), "Regularization methods for ill-posed problems with monotone nonlinear part" , PUJM, Vol 46(1), 2014, 25-38.
50. Monnanda Erappa Shobha, Santhosh George and M. Kunhanandan(2014), A two step Newton type iteration for ill-posed Hammerstein type operator equations in Hilbert scales, J.Intgr.Eq.Appl., 26, 1(2014), 91-116.
49. I.K.Argyros and S.George (2013), Expanding the applicability of a newton-Lavrentiev regularization method for ill-posed problems, MATHEMATICA, Tome, 55 (78), No. 2, 103 - 111.
48. S.George and I.K.Argyros (2013), Tikhonov’s regularization and a cubic convergent iterative approximation for nonlinear ill-posed problems, Advances and Applications in Mathematical Sciences, 12, 8(2013), 435-486.
47. Ioannis K. Argyros and Santhosh George (2013), Expanding the applicability of a two step Newton Lavrentiev method for ill-posed problems, Journal of Nonlinear Analysis and Optimization: Theory & Applications, Vol.4, 2(2013), 1-15.
46. Ioannis K. Argyros and Santhosh George (2013), Extending the applicability of Newton’s method on Riemannian manifolds with values in a cone, Asian-European J. Math. Vol. 6, No.3(2013) 1350041(15 pages) (World Scientific) DOI: 10.1142/S1793557113500411.
45. Ioannis K. Argyros, Yeol Je Cho and S.Georeg(2013), Expanding the Applicability of Lavrentiev Regularization Methods for Ill-posed Problems,Boundary Value Problems 2013, 2013:114.
44. S.Georeg, S.Pareth and M. Kunhanandan(2013), Newton Lavrentiev Regularization for ill-posed operator equations in Hilbert scales, Applied Mathematics and Computation, Vol. 219,(24), 11191–11197.
43. Ioannis K. Argyros and Santhosh George (2013), Expanding the applicability of a modified Gauss-Newton method for solving nonlinear ill-posed problems, Applied Mathematics and Computation, Vol. 219 (21), 10518-10526
42. Ioannis K. Argyros and Santhosh George(2013), On the semilocal convergence of a two-step Newton-like projection method for ill-posed equations, Appl. Math.(Warsaw) 40 (2013), 367-382 DOI: 10.4064/am40-3-7.
41. Ioannis K. Argyros and Santhosh George, Modification of the Kantorovich -type conditions for Newton's method involving twice-Frechet differentiable operators, Asian-European J. Math.Vol.6, No.3 (2013), 1350026(13 pages) (World Scientific), DOI: 10 .1142/ S1793557113500265.
40. Ioannis K. Argyros and Santhosh George (2013),Chebyshev-Kurchatov-type methods for solving equations with non-differentiable operators, Nonlinear Functional Analysis and Applications, V. 18, 3, pp 421-432.
39. Ioannis K. Argyros and Santhosh George (2013), An extension of a theorem by B.T. Polyak on gradient-type methods, Nonlinear Functional Analysis and Applications, V 18, 3, pp.411-420.
38. M. E. Shobha and S. George(2013), On Improving the Semilocal Convergence of Newton-Type Iterative Method for Ill-Posed Hammerstein Type Operator Equations, IAENG, Int J. Appl. Math, Volume 43 Issue 2, Pages 64-70.
37. I.K.Argyros and S.George(2013),Expanding the applicability of a Simplified Newton-Tikhonov regularization method for ill-posed equations,Transactions on Mathematical Programming and Applications, Volume 1(2013), Number 4, 75–85.
36. I.K.Argyros and S.George(2013), Improved Local Convergence of Lavrentiev Regularization for Ill-posed Equations,Transactions on Mathematical Programming and Applications, Volume 1, Number 2, 65-76.
35. M.E.Shobha and S. George(2013) Projection method for Newton-Tikhonov regularization for non-linear ill-posed Hammerstein type operator equations, Int. J.Pure.Appl. Math, Vol 83(5), 643-650.
34. I.K.Argyros and S.George(2013), Extending the Applicability of the Mesh Independence Principle for Solving Nonlinear Equations, Transactions on Mathematical Programming and Applications, Volume 1, Number 1, 15–26
33. S. George(2013), Newton type iteration for Tikhonov regularization of nonlinear ill-posed problems, Journal of Mathematics, vol. 2013, Article ID 439316, 9 pages, 2013. doi:10.1155/2013/439316.
32. S.Georeg and S.Pareth(2013), An application of Newton-type iterative method for the approximate implementation of Laventiev regularization, J. Appl.Anal. (DOI: 10.1515/jaa-2013-0011,De Gruyter).
31. P.Jidesh and S.George(2012), Gauss curvature driven image inpainting for image reconstruction, Journal of Chinese Institute of Engineers, Vol. 37, No. 1, 122–133,
http://dx.doi.org/10.1080/ 02533839. 2012.751332
30. M.E.Shobha and S. George(2012), Dynamical system method for ill-posed Hammerstein type operator equations with monotone operators, Int. J.Pure.Appl. Math, V.81, no.1, 129-143.
29. S.George and S.Pareth(2012), An application of Newton type iterative method for Laverentiev regularization for ill-posed equations: Finite dimensional realization, IAENG, Int J. Appl. Math, Vol.42, 3, pp.164-170.
28. P.Jidesh and S.George(2012), Fourth-Order Gauss Curvature Driven Diffusion for Image Denoising, Int. J. Comp. Elect. Eng, Vol.4, No.3, pp. 350-354.
27. P. Jidesh and S. George (2012), Schock coupled fourth-order diffusion for image enhancement, Comput. Electr.Eng, 38, pp.1262-1277(doi: 10.1016/ j.compeleceng.2012.03.017).
26. S.George nad A.I.Elmahdy(2012), A quadratic Convergence yielding iterative method for nonlinear ill-posed operator equations, Comput.Methods. Appl. Math. Vol.12, No.1, pp. 32-45.
25. S.George and S.Pareth(2012), Two Step Newton Method forNonlinear Lavrentiev Regularization, ISRN Applied Mathematics, Vol. 2012,Article ID 728627, 14 pages, doi:10.5402/2012/728627.
24. S.George and M.E.Shobha(2012), Two Step Newton-Tikhonov Method for Hammerstein-Type Equations: Finite Dimensional Realization, ISRN Applied Mathematics, Vol. 2012, Article ID783579, 22 pages, doi:10.5402/2012/783579.
23. P.Jidesh and S.George (2012), A time-dependent switching anisotropic diffusion model for denoising and deblurring images, Journal of Modern Optics, Vol.59, No.2, pp.140-156.(DOI:10.1080/09500340-2011.633713).
22. P.Jidesh and S.George (2011), Fourth-order variational model with local-constraints for denoising images with textures, In.J. Computational Vision and Robotics, vol.2, No.4, pp. 330-340.
21. P.Jidesh and S.George (2011), Curvature Driven Diffusion Coupled with Shock for Image Enhancement/ Reconstruction, Int. J. of Signal and Imaging Systems Engineering, Vol.4, No.4, pp. 238-247.
20. S.George and P.Jidesh (2011), Reconstruction of signals by standard Tikhonov method, Applied Mathematical Sciences, Vol. 5, No.57, pp. 2819-2829.
19. S .George and M.E.Shobha (2011), A Regularized Dynamical System Method for Nonlinear ill-posed Hammerstein Type Operator Equations, J. Appl. Math. Bioinf, Vol.1, no.1, pp.65-78.
18. P.Jidesh and S .George(2011), Adaptive Multi-model Biometric Fusion for Digital Watermarking. IJCSI, Vol.8, 3 No.2, pp. 282-289.
17. S .George and A.I.Elmahdy (2010), An Iteratively regularized projection method with quadratic convergence for nonlinear ill-posed problems, Int.J.Contem.Math.Sci, Vol.4, No. 45, 2211-2228.
16. S.George and A.I.Elmahdy (2010), An Iteratively regularized projection method for nonlinear ill-posed problems, Int.Journal of Math.Analysis, Vol.5, No.52, 2547-2565.
15. S.George and M. Kunhanandan(2010), Iterative regularization methods for ill-posed Hammerstein type operator equation with monotone nonlinear part, Int.Journal of Math.Analysis ,Vol 4, no.34, pp 1673-1685.
14. S.George and A.I.Elmahdy (2010), An analysis of Lavrentiev regularization for nonlinear ill-posed problems using an iterative regularization method, Int.J.Comput.Appl.Math Vol 5, 3, pp. 369-381.
13. S.George (2010), On convergence of regularized modified Newton's method for nonlinear ill-posed problems, J.Inv.Ill-Posed Problems,18,133-146(De Gruyter).
12. S.George and M. Kunhanandan, An iterative Regularization Method for Ill-posed Hammerstein Type Operator Equations J.Inv.Ill-Posed Problems 17 (2009), 831-844.
11. S.George (2008), Monotone Error Rule for Tikhonov Regularization in Hilbert Scales, J.Analysis, Vol 16, 1-9.
10. S.,George and M.T.Nair, A Modified Newton-Lavrentiev Regularization for Non-Linear ill-posed Hmmerstein operator equations, Journal of complexity, 24(2008), PP. 228-240.
9. S.George, Newton-Lavrentiev regularization of ill-posed Hammerstein type operator equation, J.Inv.Ill-Posed Problems, (2006)14, No.6, 392-399.
8. S.George, Newton-Tikhonov regularization of ill-posed Hammerstein operator equation, J.Inv.Ill-Posed Problems, (2006)14, No.2, 135-145.
7. S.George and M.T.Nair, An Optimal Order Yielding Discrepancy Principle For Simplified Regularization Of Ill-posed Problems In Hilbert Scales: Finite Dimensional Realizations, International Journal of Mathematics and Mathematical Sciences; 37(2004) 1973-1996.
6. S.George and M.T.Nair, An Optimal Order Yielding Discrepancy Principle For Simplified Regularization Of Ill-posed Problems In Hilbert Scales, International Journal of Mathematics and Mathematical Sciences; 39(2003) 2487-2499.
5. S.George and M.T.Nair, On a Generalized Arcangelis Method for tikhonov Regularization with inexact data J.Numer.Funct.Anl. & Optimiz. 19 (7 & 8) pp.773- 787(1998).
4. S.George and M.T.Nair, Error bounds and parameter choice strategies for simplified regularization in Hilbert scales, Integr.Equat.Oper.Th; 29(1997) pp.231-242.
3. S.George and M.T.Nair, Parameter Choice by Discrepancy Principals for ill-posed Problems leading to optimal convergence rates, J.Optim.Th.and App.Vol.83. No.1, pp. 217-222, October 1994.
2. S.George and M.T.Nair, A Class of Discrepancy Principals for the Simplified Regularization J.Austral. Math. Soc.Ser.B. 36(1994) 242-248.
1. S.George and M.T.Nair, An Apostoriori Parameter Choice for Simplified Regularization of ill-posed problems, Integr.Equat.Oper.Th; 16(1993) 392-399.
(2) Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume-I, Nova Publishes, US I. K.ARGYROS S. GEORG N. THAPA, ISBN: 978-1-53613-362-2.
(3) Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume-II, Nova Publishes, US I.K. ARGYROS, S.GEORGE, N. THAPA, ISBN: 978-1-53613-310-3.
(4) Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume-III, Nova Publishes, US I.K. ARGYROS, S.GEORGE, ISBN: 978-1-53615-942-4.
(5) Mathematical Modeling For The Solution Of Equations And Systems Of Equations With Applications, Volume-IV, Nova Publishes, US I.K. ARGYROS, S.GEORGE, ISBN: 978-1-53617-474-8.
(6) Contemporary Algorithms: Theory and Applications. Volume I, NOVA Publishers, C. I. Argyros, S. Regmi, I. K. Argyros,, S. George, ISBN: 978-1-68507-994-9
(c) Special Issue ”Iterative Methods with Applications in Mathematical Sciences” A special issue of Foundations (ISSN 2673-9321). This special issue belongs to the section ”Mathematical Sciences”.